How to Optimize 10% Warranty Cost Yearly with Big Data Analytics

GrayMatter Manufacturing Analytics is a massive subject matter and the considerations around the same can be really detailed and fascinating. My mind goes back to an engagement revolving around warranty cost, for a global energy management specialist. This specific engagement concerned reduction of warranty claims costs by 6-10% for a yearly on $400M warranty spend.

When we are discussing about this warranty cost engagement, it is one of the most composite analytics scenarios as reducing warranty cost requires numerous data points and advanced correlation in data. For example, consider the aforesaid engagement, the company has 30000+ repair centers across 80+ countries, 20+ factories across globe, 100,000+ SKU, 50-100 Million units over 3-5 years of warranty support and a very complex organization structure.

To reduce warranty cost you should first integrate 30000+ rows of repair data every day and reverse engineer faulty products back to their manufacturing process history, manufacturing test result history with BOM (Bill of Material) and identify the major root cause for failure. It is simply very large and complex data coming from repair stations, manual inspections, and corporate master data, manufacturing machine logs, manufacturing test station, ERP, CRM and few other sources

Register here to download more information